MODEL ANSWER SUMMER-19 EXAMINATION Subject Title:Applied ElectronicsSubject Code: 22329

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\mathbf{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marki ng Schem e
Q. 1		Attempt any Five :	10M
	a)	State classification of Amplifiers.	2M
	Ans:	CLASSIFICATION OF AMPLIFIERS: A] Based on input signal 1. Small signal amplifiers 2. Large signal amplifiers B] Based on output signal 1. Voltage amplifier 2. Power amplifier C] Based on biasing conditions 1. Class A amplifier 2. Class B amplifier 3. Class AB amplifier 4. Class C amplifier D] Based on frequency response 1. Audio frequency amplifier 2. Radio frequency amplifier E] Based on coupling 1. Direct coupled amplifiers 2. R-C Coupled amplifier	2M

	3. Transformer coupled amplifier	
b)	Define the terms related to tuned amplifiers (i) Resonant Frequency(Fr) (ii) Q Factor	2M
Ans:	(i) Resonant Frequency(Fr): It is a frequency at which the inductive reactance is equal to the capacitive reactance i.e. $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ (ii) \mathbf{Q} Factor: The quality factor or Q factor is a measure of the performance of a coil, capacitor inductor in terms of its losses and resonator bandwidth. $\mathrm{Q}_{\mathrm{O}}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=\frac{\omega_{0} \mathrm{~L}}{\mathrm{R}}=\frac{2 \pi f_{0} \mathrm{~L}}{\mathrm{R}}$ Where, $L=$ value of circuit inductance. $\mathrm{R}=$ Value of circuit resistance.	$\begin{aligned} & 1 \mathrm{M} \\ & \mathbf{1 M} \end{aligned}$
c)	State the need of multistage amplifier.	2M
Ans:	Need of multistage amplifier: The voltage (or power) gain, obtained from a single stage small signal amplifier, is limited. Therefore, it is not sufficient for all practical applications. Therefore, in order to obtain greater voltage and power gain, we have to use more than one stage of amplification. Such an amplifier is called a 'MULTISTAGE AMPLIEIER'	2M
d)	List the types of power amplifiers.	2M
Ans:	Types of power amplifiers:- 1. Class A amplifier 2. Class B amplifier 3. Class AB amplifier 4. Class C amplifier	Each type: 1/2M
e)	List advantages of negative feedback(any four)	2M
Ans:	Advantage of negative feedback amplifier: - Increased stability in gain - Increased bandwidth - Less amplitude and harmonic distortion - Decreased noise - Less frequency distortion - Less non-linear distortion - Input and output resistance can be modified as desired.	Each point: 1/2M
f)	Define : (i) Sweep time (ii) Retrace time	2M
Ans:	(i) Sweep time: It is defined as time interval taken by time based signal generator to increase from minimum to maximum voltage.	1M

	applied so large heat sinks are needed for the output transistors. For Figure (b):- An output transformer improves the efficiency of the amplifier by matching the impedance of the load with that of the amplifiers output impedance. By using an output or signal transformer with a suitable turns ratio, class-A amplifier efficiencies reaching 40% are possible.	
c)	Explain principle of feedback amplifier.	4M
Ans:	Block diagram of feedback amplifier:- Explanation:- - "Feedback" is a process of injecting some energy from the output and then it back to the input. The amplifier which use the feedback principle are called feedback amplifier". - Depending upon whether the feedback signal increases or decreases the input signal, there are 2 basic types of feedback: Positíve feedback and Negative feedback. From the above figure, the gain of the amplifier is represented as A. the gain of the amplifier is the ratio of output voltage V_{o} to the input voltage V_{i}. The feedback network extracts a voltage $\mathrm{V}_{\mathrm{f}}=\beta \mathrm{V}_{\mathrm{o}}$ from the output V_{o} of the amplifier. This voltage is added for positive feedback and subtracted for negative feedback, from the signal voltage V_{s}. Now, $\begin{aligned} & \mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{s}}+\mathrm{Vf} \\ &=\mathrm{V}_{\mathrm{s}}+\beta \mathrm{V}_{\mathrm{o}} \ldots \\ & \mathrm{~V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{s}}-\mathrm{Vf} \\ &=\mathrm{V}_{\mathrm{s}}-\beta \mathrm{V}_{\mathrm{o}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ & \end{aligned}$ The quantity $\beta=\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{o}}$ is called as feedback ratio or feedback fraction.	2M
d)	Draw circuit dagram of RC phase shift oscillator and state its working.	4M
Ans:	Circuit diagram of RC phase shift oscillator:	2M

		WORKING: - Circuit consists of a single stage amplifier in common emitter configuration \& RC phase shifting network. - R_{1}, R_{2}, R_{E} provides biasing \& C_{E} is bypass capacitor. - Common emitter amplifier introduces a 180° phase shift between input \& output. \& remaining 180° phase shift is produced by three identical basic RC phase shifting networks. - Each RC network is designed to introduce a phase shift of 60°. - The phase shift around the loop is 360° only at one precise frequency. - This frequency of oscillations is equal to $\frac{1}{2 \pi R C \sqrt{6}}$ - The feedback factor $\beta=\frac{1}{29}$ Therefore $A_{v}=29$.	2M
Q. 3		Attempt any three:	12- Total Marks
	a)	Sketch circuit diagram of common source FET Amplifier. State working principle of it.	4M
	Ans:	Common daurce FET amplifier Working: - When small a.c. signal is applied to the gate, it produces variation in	$\mathbf{2 M}$

(ISO/IEC - 27001-2005 Certified)
the gate to source voltage. This produces variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this voltage drop across R_{D} also increases. This causes the drain voltage to decreases. negative, it will increase the channel width and increase the level of drain current I_{D}.

As the input voltage falls, it will decrease the channel width and decrease the level of drain current I_{D}.

Thus I_{D} varies sinusoidally above its Q point value.
The drain to source voltage $V_{D S}$ is given by
$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}$
Therefore as I_{D} increases the voltage drop $I_{D} R_{D}$ will also increase and voltage V_{DS} will decrease.

If $\Delta \mathrm{I}_{\mathrm{D}}$ is large for a small value of $\Delta \mathrm{V}_{\mathrm{Gs}}$; the $\Delta \mathrm{V}_{\mathrm{DS}}$ will also be large and we get amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC input voltage.

b)	Explain the term crossover distortion. State methods to overcome it.
Ans:	Explanation:-
	\bullet Cross over distortion occurs in Class B push pall Amplifier.
	\bullet In the push-pull configuration, the two identical transistors get into conduction, one after
	the other and the output produced will be the combination of both.
	- When the signal changes or crosses over from one transistor to the other at the zero
	voltage point it produces an amount of distortion to the output wave shape. For a

- At the zero voltage point, the transition period of switching over the transistors from one
to the other, has its effect whích leads to the instances where both the transistors are OFF at a time. Such instances can be called as Flat spot or Dead band on the output wave shape.

Waveform:-

- Cross over distortion occurs in Class B push pall Amplifier.
- In the push-pull configuration, the two identical transistors get into conduction, one after the other and the output produced will be the combination of both.
- When the signal changes or crosses over from one transistor to the other at the zero voltage point, it produces an amount of distortion to the output wave shape. For a

Method to overcome :

This cross over distortion can be eliminated if the conduction of the amplifier is more than

	one half cycle, so that both the transistors won't be OFF at the same time. The remedy is to use Class AB amplifier.	
c)	Compare positive feedback and negative feedback on the basis of: (i) Gain (ii) Bandwidth (iii) Phase shift (iv) Stability	4M
Ans:		$\begin{aligned} & \text { Each } \\ & \text { point } \\ & \text { 1M } \end{aligned}$
	Sr. no. Parameter Positive feedback Negative feedback 1 Gain Increases	
	2 Bandwidth Decreases Increases	
	4 Stability Poor (1) Improved	
d)	Draw block diagram of SMPS. State its working principle.	4M
Ans:	Block diagram of SMPS:-	2M

Switching regulators are used as replacements for linear regulators when higher efficiency, smaller size or lighter weights are required.

OR

Working :-

Rectifier and filter :- It converts the ac supply voltage to a pulsating dc, which is then filtered out to reduce the amount of ripple content. It uses the power diodes in a bridge configuration to obtain the pulsating dc and the capacitor is used as a filter element.
High-frequency switching:- It uses either MOSFETs or BJTs to convert the dc voltage to high frequency ac square wave. This high-frequncy ac square wave ranges from 20 kHz to 100 kHz . Since the power transistors are not operated in their active region, their operation results in low power dissipation. Thus, it is a two stage conversion. i.e. the input ac supply voltage is first rectified to dc and then the high- frequency switching section changes it back to ac.
High frequency power transformer:-It isolates the circuit and steps-up or steps-down the voltage to the desired voltage level. The output of the transformer is the input of the second rectifier section, called the output rectifier section.
Output rectifier :- This rectifier section is different from the first block of the rectifier in that the frequency of the voltage is very high. Therefore, the bridge configuration of this rectifier uses a high frequency diode such as a Schottky diode and the output ripple is naturally filtered because of the number of overlaps between each individual output pulse. Since the ripple is very small in the output voltage of the rectifier, a small capacitance value is required in the filter section.
Control and feedback:- It provides a pulse width modulation(PWM) output signal. The PWM controller provides a duty-cycle that varies pulse by pulse to provide an accurate dc output voltage.

(ISO/IEC - 27001-2005 Certified)

	c)	IdentifythecircuitgiveninFigureNo.1.Calculateoutputfrequen cyof the given circuit if $\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}=\mathrm{R}_{\mathbf{3}}=\mathbf{2 K} \Omega$ and $\mathrm{G}=$ $\mathrm{C}_{2}=\mathrm{C}_{3}=0.1 \mu \mathrm{f}$	6M
	Ans:	The given circuit diagram is RC phase shift Ocillator Given $\begin{aligned} & R_{1}=R_{2}=R_{3}=2 \mathrm{ks} \\ & c_{1}=c_{2}=c_{3}=0.1 \mathrm{\mu F} . \end{aligned}$ freg $\begin{aligned} & \frac{2 \pi \sqrt{6} R C}{} \\ = & \frac{1}{2 \pi \sqrt{6} \times 2 \times 10^{3} \times 0.1 \times 10^{-6}} \\ = & 324.87 \mathrm{~Hz} . \end{aligned}$	2M 2M Form ula
Q. 6		Attempt any TWO of the following:	12- Total Marks
	a)	CompareClassA ,ClassB,ClassCandclassABpoweramplifiersonthebasis of: i)Angle of conduction ii)Efficiency iii)Position of operating pointing power dissipation iv)Distortion 日HR-CENTERS.	6M

	v)Application						
Ans:	Sr. No	Parameter	Class A	Class B	Class C	Class AB	Efficie ncy point others points 1M each
	1	Angle of conduction	360°	180°	$\begin{gathered} \text { Less than } \\ 180^{\circ} \end{gathered}$	More than 180° less than 360°	
	2	Efficiency	$\begin{gathered} \hline 25 \% \text { can } \\ \text { increase to } \\ 50 \% \\ \hline \end{gathered}$	78.5\%	95\%	78.5\%	
	3	Position of operating point in power dissipation	At the center of load line	On X-axis	Below Xaxis	Just above X-axis	
	4	Distortion	$\begin{gathered} \text { No } \\ \text { distortion } \end{gathered}$	Distortion more than A and AB but less than C	Maximum distortion	Less than B and C but more than A	
	5	Application	Outdoor musical system	Audio power amplifiers \qquad	Audio power amplifier	RF amplifier	
b)	DrawBootstrapsweepgeneratorcircuit,CompareMillerIntegratora ndbootstrapsweepgeneratorwithrespecttothetechniqueused.						6M
Ans:	Circuit diagram of bootstrap sweep generator:						2M
	$\begin{array}{\|l\|} \hline \text { Sr. } \\ \text { No } \\ \hline \end{array}$	Miller Integrator		Bootstrap sweep generator			Any 4 points
	1	It is an integrator step waveform into	d to convert mp waveform	In Bootstrap time base generator a constant current is obtained by maintaining nearly constant voltage across fixed resistor in series with capacitor			1M each
	2	In Miller sweep pol is negative.	ty of sweep vo	In Bootstrap polarity of sweep voltage is positive			
	3	The inverting ampl circuit	ier is used in	The non-inverting amplifier is used in this circuit			

